Color Symmetry in Plane Patterns

Frank A. Farris Santa Clara University

The symmetries of a pattern form a group

A symmetry is a transformation that leaves the pattern invariant

Rosettes, friezes, wallpaper

My origin story: grating def'ns of "pattern"

"A frieze pattern is a set of points that is invariant under..."

...FEFEFE...

Set of points? A pattern is a function!

Stumbled on color symmetry by accident

Rendered in Excel!

My origin story: grating def'ns of "pattern"

"A pattern is obtained by repeating a motif..."

My response: Patterns are made from waves!

SymmetryWorks software allows you to play too.

Public domain software written by students at Bowdoin College (and SCU)

$$f(g(z)) = f(z)$$
 for $g \in G$

Connect function-theoretic approach to color symmetry

Read the details:

- Classifying patterns
- Two-color symmetry
- Three-color symmetry

Connect to textiles in the real world?

Classifying patterns

Wallpaper: Translational symmetry along two independent axes

Classify patterns by symmetries

Too many to list!

Mirrors

4-Centers

Glide reflections

Group concept: Compose two symmetries, get a symmetry

"freedom and constraint"

Learn how to draw a "fundamental cell"

Complete cell diagram with...

Group concept: a few symmetries can generate all

This group is called **p4g** by the International Union of Crystallographers

p4g can be generated by one mirror, one rotation

Two patterns have the same "type" if their symmetry groups are the same

Wallpaper surprise: Exactly 17 types

Chalk Slam at Carleton

See them everywhere!

pmg pattern from The Shining

Construct wallpaper functions

$$f(g(z)) = f(z)$$
 for $g \in G$

SymmetryWorks screenshot

Written by students at Bowdoin College, based on software by SCU students. Handout available

A few favorites: Minimalist

Recognize p4g?

A few favorites: Fanciful

Machine learning project: Find patterns that humans will like

Color-reversing (or 2-color) symmetry

$$f(g(z)) = f(z)$$
 for some
 $f(h(z)) = -f(z)$ for others

Requires a color-reversing wheel

A break for algebra: Suppose

$$f(h(z)) = -f(z)$$
 for some transformation h

$$G_c = \{g|f(g(z)) = \pm f(z)\}$$

 $G = \{g|f(g(z)) = f(z)\}$

Color gp Sym. gp

Homomorphism

$$\phi:G_c\to\{1,-1\}$$

G is normal in G_c of index 2

$$f(g(z)) = \phi(g)f(z)$$
 for all $g \in G_c$

How many ways?

17 symmetry types 46 color-reversing types

Actual symmetry group: p3

Color-reversing or –preserving symmetries: p6

type: p6/p3

Color-reversing half turn

Actual symmetry group: pmg

Color-reversing or -preserving symmetries: cmm

type: cmm/pmg

Color black counts as 0

Color-reversing half turn

THE GEOMETRICAL BASIS OF PATTERN DESIGN. Part IV: Counterchange Symmetry in Plane Patterns, by H. J. Woods

Journal of Textiles (Manchester) 1936

Figures from Grünbaum and Shephard, Tilings and Patterns

Ad hoc notations like p4g[2]_2

Figures from appendix of Creating Symmetry

Types p4m/cmm and p4g/cmm

Recipes for 63 types

These recipes are not encoded in current software

Three-color (color-turning) symmetry

$$f(g(z)) = \phi(g)f(z)$$
 for all $g \in G_c$

$$f(\omega z) = \omega f(z)$$

Three-color (color-turning) symmetry

Diagonal 1/3 translations are color-turning

Connect to the non-digital world?

Woven Rope Friezes, with Hans Kristian Rossing in Mathematics Magazine, 1999

Physical object not invariant under mirror symmetry, but rather under half-turn symmetry in space

Connect to the non-digital world?

"Woven" polyhedral shapes

Color gp
O
Sym. gp
T
24 Bands

Aside: Polyhedral Sampler from 2015

Icos from five tetrahedra
60 bands.
Does *not* have 5-color symmetry

D6/D3

Question: Which frieze and wallpaper patterns can be woven in chain mail? Color patterns?